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Summary 1992; Gottesman and Collins 1994; McKusick 1994).
Utilization of large multigenerational pedigrees with a

Genomic screening to map disease loci by association
number of affected individuals is a proved strategy for

requires automation, pooling of DNA samples, and
isolating chromosomal regions containing disease genes3,000–6,000 highly polymorphic, evenly spaced micro-
by use of microsatellite markers and LOD-score linkagesatellite markers. Case-control samples can be used in an
analysis (Ott 1991; Lander and Schork 1994; Jordeinitial screen, followed by family-based data to confirm
1995; Weeks and Lathrop 1995). Linkage studies aremarker associations. Association mapping is relevant to
often followed by association studies to further localizegenetic studies of complex diseases in which linkage
the predisposing gene (Jorde et al. 1994; Lander andanalysis may be less effective and to cases in which multi-
Schork 1994; Jorde 1995; Weeks and Lathrop 1995).generational data are difficult to obtain, including rare
Linkage disequilibrium, the basis of marker associa-or late-onset conditions and infectious diseases. The
tions, is typically found within a distance of 500 kb,method can also be used effectively to follow up and Ç0.5 cM (Jorde et al. 1994). For the vast majority ofconfirm regions identified in linkage studies or to investi-
diseases, disease genes mapped to date have shown link-gate candidate disease loci. Study designs can incorpo-
age disequilibrium with markers sufficiently close to therate disease heterogeneity and interaction effects by ap-
disease gene—for example, cystic fibrosis, Huntingtonpropriate subdivision of samples before screening. Here
disease, Wilson disease, Batten disease, Friedreichwe report use of pooled DNA amplifications—the accu-
ataxia, myotonic dystrophy, torsion dystonia, hemo-rate determination of marker-disease associations for
chromatosis, diastrophic dysplasia, adult-onset polycys-both case-control and nuclear family–based data—in-
tic kidney disease, the familial breast cancer genecluding application of correction methods for stutter
BRCA1 in the Ashkenazi Jewish population, and othersartifact and preferential amplification. These issues,
(Weir 1989; Hanauer et al. 1990; Harley et al. 1991;combined with a discussion of both statistical power and
Håstbacka et al. 1992; Ozelius et al. 1992; Pound et al.experimental design to define the necessary requirements
1992; Skraastad et al. 1992; Jazwinska et al. 1993; Ler-for detecting of disease loci while virtually eliminating
ner et al. 1994; Bowcock et al. 1994; Freidman et al.false positives, suggest the feasibility and efficiency of
1995; Feder et al. 1996).association mapping using pooled DNA screening.

For many genetic diseases, including complex diseases
that do not demonstrate simple Mendelian inheritance,

Introduction large multigenerational pedigrees suitable for linkage
analysis may not be available. Sampling and linkageThe rapid development and application of highly infor-
analysis of nuclear families with pairs of affected siblingsmative microsatellite markers (NIH/CEPH Collabora-
is another commonly used strategy. However, the detec-tive Mapping Group 1992; Weissenbach et al. 1992;
tion of genetic factors in linkage studies for complexGyapay et al. 1994; Murray et al. 1994; Dib et al. 1996)
diseases such as bipolar disorder, schizophrenia, rheu-has greatly facilitated the localization of disease loci in
matoid arthritis, insulin-dependent diabetes mellitusú400 rare Mendelian disorders (Cooper and Schmidtke
(IDDM), non–insulin-dependent (NIDDM) diabetes,
and multiple sclerosis (MS), (Davies et al. 1994; Field
et al. 1994, 1996; Hashimoto et al. 1994; Copeman etReceived July 24, 1996; accepted for publication June 10, 1997.
al. 1995; Owerbach and Gabbay 1995; Antonarakis etAddress for correspondence and reprints: Dr. William Klitz, Depart-

ment of Integrative Biology, 3060 Valley Life Sciences Building, Uni- al. 1996; Cornélis et al. 1996; Ebers et al. 1996; Friemer
versity of California, Berkeley, CA 94720. E-mail: wklitz@allele5 et al. 1996; Hanis et al. 1996; Kuokkanen et al. 1996;
.biol.berkeley.edu Luo et al. 1996; Multiple Sclerosis Genetics Group� 1997 by The American Society of Human Genetics. All rights reserved.
0002-9297/97/6103-0031$02.00 1996; Sawcer et al. 1996) has proved difficult. Few re-
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gions containing putative disease loci have been uncov- duce labor and reagent costs. DNA-pooling strategies
have been successfully documented for homozygosityered in these studies, and no genes have yet been identi-

fied. In addition, most of these regions await mapping of candidate regions in autosomal recessive
disorders, using isolated populations (Carmi et al. 1995;confirmation in independent studies, with the exception

of IDDM, for which there is currently sufficient evi- Nystuen et al. 1996; Scott et al. 1996; Sheffield et al.
1996a, 1996b). Pooling individual DNA samples ren-dence, for 4 of the ú10 identified disease regions, to

justify fine-mapping efforts (Luo et al. 1996; Todd and ders the determination of allele frequencies much more
efficient, since the same information obtained from theFarrall 1996). Multiple loci, each contributing modestly

to disease expression, are likely to be involved in these analysis of a large number of individuals can be ex-
tracted from pooled data by use of just a few coamplifi-complex disorders and may be difficult to detect by use

of standard linkage approaches. cations. The recent development of a mathematical
method for correction of stutter artifact (or shadowLarge-scale association studies of candidate genes by

use of case-control or nuclear family–based sample col- bands) that occur primarily in the amplification of dinu-
cleotide microsatellites (Perlin et al. 1995) has also im-lections may in fact be more effective than linkage analy-

sis, as a strategy to identify disease loci of modest effect proved the accuracy of microsatellite allele-frequency
estimates using pooled data. In addition, large numbers(Risch and Merikangas 1996). Recent theoretical analy-

sis of nuclear family–based data demonstrates that, of polymorphic tri- and tetranucleotide markers, which
are generally more robust and show less stutter, are nowapart from type I error, an association uncovered by use

of nuclear family–based data must implicate a disease- available (Sheffield et al. 1995). Conventional autora-
diographic methods for microsatellite typing have beenpredisposing locus linked to the marker locus (Ott 1989;

Knapp et al. 1993; Spielman et al. 1993; Thomson replaced with much more efficient automated fluores-
cence-based systems, which allow simultaneous analysis1995b; Spielman and Ewens 1996). Although the careful

matching of cases and controls probably eliminates most of multiple markers with overlapping sizes within one
gel lane (Reed et al. 1994; Kobayashi et al. 1995). DNApopulation-stratification problems that might result in

the detection of false associations, family-based data re- pooling and automated typing has recently been used to
screen inbred mice for obesity genes (Taylor and Phillipsmove these concerns.

When an appropriate isolated population of relatively 1996).
We propose the use of pooled DNA amplifications ofrecent origin can be employed for genetic analysis of

disease, a few hundred markers would be sufficient to microsatellite markers to facilitate efficient, cost-effec-
tive, high-resolution genome screening for detection ofscreen the genome, if it can be assumed that linkage

disequilibrium extends to §10 Mb (Håstbacka et al. disease loci by association. Examples of marker-disease
association are demonstrated by use of three microsatel-1992). This would be most effective for simple mono-

genic diseases, but such extensive disequilibrium would lite markers and data from two diseases, including both
case-control and nuclear family–based samples. Theprove a hindrance to gene localization. More generally,

for large, essentially panmictic groups, 3,000 (and pref- problems of preferential amplification and stutter arti-
fact that are present for many microsatellites are ad-erably 6,000) highly polymorphic, evenly spaced mark-

ers, with a 1-cM (0.5 cM) average distance between dressed. Successfully implementing a DNA-typing
scheme using pooled samples produces allele-frequencymarkers, would be required for an initial disease-associ-

ation genomic screen, compared with the typical 300 data on thousands of genetic markers. The effective
analysis and interpretation of these data require applica-markers, spaced at 10 cM, used for linkage studies with

family data. A screen of this resolution would ensure tion of a clearly defined theoretical and statistical
scheme. A detailed statistical power table is presentedthat any disease gene would be, on average, õ0.5 cM

(0.25 cM) from a marker. Currently, the number of to guide study design for association mapping of disease
genes, along with example experimental designs and lab-polymorphic microsatellites totals ú12,000; 9,000 of

these have heterozygosities ú.70 and are predominantly oratory-protocol considerations. Our results suggest the
enormous potential of genomic screening using pooleddinucleotide markers (Bowcock et al. 1996). Although

this translates to an average map resolution of 273 kb DNA, as a valuable tool in the effort to identify both
disease and trait loci generally.(0.273 cM), there are still likely to be sizable gaps. How-

ever, as progress in physical mapping efforts continues,
higher-density and more evenly spaced genetic maps are Material and Methods
soon anticipated—for example, 100 kb (0.1 cM) by

DNA Samples1999 (Cox and Myers 1996).
Association genomic screening of this magnitude be- Caucasian hemochromatosis patient samples (n Å 51)

were provided through a collaboration with Dr. Georgecomes feasible with the use of both pooled DNA samples
and automation of microsatellite typing methods to re- Sensabaugh, at University of California, Berkeley, and
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Dr. David Baer, at Kaiser Hospital, Oakland. Unrelated were pooled to run simultaneously, when this was possi-
ble), and 2.0 ml was combined with 0.5 ml of internalCaucasian control individuals (n Å 75) were collected

in northern California. IDDM-affected sib-pair families lane size standard (TAMARA-350) and 3.5 ml of blue
dextran loading buffer with formamide (Applied Biosys-(n Å 100) were obtained from the Human Biological

Data Interchange. tems). Electrophoresis was performed for individual or
pooled alleles by use of 5%–6% denaturing (7M) acryl-

DNA Quantitation amide (National Diagnostics) on 36-cm (Well-to Read)
plates at 3,600 V for 2.0–3.5 h, by use of a model 377ASamples were diluted to approximate concentrations

of 50 ng/ml (on the basis of spectrophotometric readings) Sequencer (Applied Biosystems). After electrophoresis,
analysis was performed by use of the GeneScan (versionand were quantitated (in duplicate) by use of the 96-

well-format PicoGreenTM fluorescent assay (Molecular 2.0.1) software (Applied Biosystems) as described in the
manufacturer’s instruction manual. In brief, (a) gel laneProbes), according to the manufacturer’s protocol. In

brief, each DNA sample was added to 100 ml of 1004 tracking was checked manually, (b) The second-order
least-squares sizing method was used to calculate peakM Tris-EDTA, and 1 ml of PicoGreenTM quantitation

reagent, by use of 96-well Nunc microtiter plates. A sizes to .01 of a base, and (c) size-standard peaks were
user defined.standard curve was made from dilutions by use of a

genomic DNA sample of known concentration. Excita-
Estimation of Allele Frequencies on the Basis oftion, using a spectofluorometer (Molecular Dynamics)
Pooled Amplificationswas at 480 nm, and the emission wavelength was 520

nm. After quantitation, DNA pools were constructed Peak heights derived from electropherograms of
pooled (N individuals) DNA amplifications were con-for PCR amplification as appropriate for each disease—

for example, a pool of 51 hemochromatosis patients verted to 2N allele-frequency counts for each pool size.
The equivalent of the subtraction method for individualand a pool of 75 control individuals. In addition, four

pools of 100 individuals each (mothers, fathers, and first typing (Thomson 1995b) was applied to estimate the
‘‘affected family–based control’’ (AFBAC) populationand second affected child) were constructed from the

100 IDDM families. Each pool contained 100 ng of in the IDDM families (hereafter referred to as the ‘‘con-
trol population’’), with family samples: for N nuclearDNA from each individual, at a final concentration of

10 ng/ml. simplex families the control population would be deter-
mined by subtracting the 2N allele-frequency counts in

Microsatellite Typing the pooled sample of one affected child from each family
from the 4N parental allele counts of the pooled sampleThe following microsatellite markers were used in this

study (Genome Database accession numbers for primer of both parents. N simplex families would yield 2N
allele-frequency counts in patients and 2N allele-fre-sequences are in parentheses): D6S105 (060097), F13A1

(156948), TH (225009), and MBP (063680). Forward quency counts in controls. In our N affected-sib-pair
families, the two affected sibs in each family were ana-primers for each primer pair—D6S105, F13A1, and TH

(Research Genetics), and MBP (Operon Technolo- lyzed separately, as if they came from simplex families;
that is, there were two separate pools of patient DNA,gies)—were labeled with 6-FAM or 6-HEX phosphora-

midites. All primer pairs were first optimized by use of and each family contributed one of their affected sibs
to the first pool, the other to the second pool. The twoindividual DNA samples, to determine the appropriate

amount of template, Mg2/ concentration, and ther- patient pools were treated as independent samples (un-
der the null hypothesis of no marker association), andmocycling parameters for amplification efficiency. Reac-

tion volumes (15 ml) containing 5–10 ng of genomic the subtraction method was applied to both, yielding a
total of 4N allele-frequency counts in patients and 4NDNA, 1.5 mM MgCl2, 10 mM Tris, 50 mM KCl, 200

mM of each dNTP, 25 ng of each primer, and 0.5 U of allele-frequency counts in controls.
Taq polymerase (Boehringer-Mannheim) were prepared

Stutter-Artifact Correction for Pooled Dataon ice and were overlaid with mineral oil. Amplifications
were performed by use of a Perkin-Elmer 9600 or MJR Stutter correction (Perlin et al. 1995) was applied to

pooled allele frequencies for dinucleotide markerthermocyler, and parameters were as follows: 2 min at
94�C initial denaturation, then 28 cycles (1 min at 94�C, D6S105. An observed vector distribution Y of band peak

heights is characterized by Y Å AX, where the vector X1 min at 56�C, and 45 s at 72�C) followed by a final
extension of 30 min at 60�C. After marker optimization, denotes the true distribution of allele proportions and

the rectangular matrix A consists of known stutter pro-pooled DNA samples were amplified for each microsat-
ellite by use of conditions described above for individual files for the alleles derived from individual typings at a

locus. Individual typing results obtained from a randomtyping. Both individual and pooled samples were diluted
(D6S105 1:5, MBP 1:10, and F13A1 and TH 1:15) (and sample of 20 control individuals were used to construct
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the allele-specific correction matrix for D6S105. Two Ideally, the goal is to identify all loci contributing
genetic predisposition to a disease; however, it is neces-rare alleles, 113 and 133, were not present in this sam-

ple, and matrix profiles for these two alleles were there- sary to restrict our attention to those loci whose influ-
ence is great enough for detection. The ability to detectfore determined by use of adjacent alleles. The pseudoin-

verse function in the program package ‘‘Mathematica’’ actual disease-predisposing loci by association analysis
depends on their genetic contribution to disease; associa-(Wolfram Research) was used to calculate the inverse

of the rectangular matrix A; X was then determined tion strength (absolute difference in frequency of an al-
lele in patients and controls) can be used as a relativefrom the product of A01 and Y.
measure of genetic contribution in this context.

Preferential-Amplification Correction for Pooled Data
The extent of preferential amplification was deter- Results

mined for each allele on the basis of individual typing
DNA Pooling Using Microsatellites, with Correctionsresults. A preferential-amplification factor can be de-
for Stutter and Preferential Amplificationfined as the ratio of peak heights, x/y, where x is the

greater peak height (usually the smaller allele) and y is Disease associations can be revealed by PCR amplifi-
cation of microsatellite markers and comparison ofthe lesser peak height. For example, if the smaller allele

has a relative peak height of .62 and the larger allele pools of patient and ethnically matched control DNA
samples. The locus responsible for abnormal iron load-has a height of .38, then the preferential-amplification

factor for the smaller allele would be 1.63. In the pooled ing in hemochromatosis, for example, shows an associa-
tion with allele 121 of the dinucleotide marker D6S105,runs an observed peak height for such alleles was divided

by the preferential-amplification factor before conver- located within a region 3.3 cM telomeric to HLA-A on
chromosome 6p21 (Raha-Chowdhury et al. 1995; Federsion of the peak heights to allele-frequency counts.
et al. 1996). Significant stutter-artifact peaks were ob-

Statistics served for D6S105, and an allele-specific matrix was
designed by use of the individual D6S105 genotypingGoodness-of-fit testing using the x2 statistic was used

for all comparisons between pooled allele frequencies profiles for correction of pooled data (see Material and
Methods). Table 1 contains the stutter-correction matrixand those determined on the basis of individual typings.

The P value from goodness-of-fit testing was used as a A for D6S105. The columns of matrix A represent the
stutter profiles for each of the observed alleles derivedmeasure of the degree of closeness between the pooled

and individually typed allele-frequency distributions; for from individual genotyping results. The distribution of
fragments for allele 133, for example, is .68, .26 andexample, a P value of .90 indicates very high concor-

dance between the two distributions. The x2 test for .06, for fragment sizes 133, 131, and 129, respectively.
The pseudoinverse of this rectangular matrix isheterogeneity was used to determine significance in con-

tingency-table testing of all case-control and family data. multiplied by a vector Y, the observed distribution of
fragment sizes in the pooled samples, to give the allele-

Power Calculations frequency estimates, vector X. We give the example of
the observed pooled DNA-control frequency profile (2NSimulations of 100,000 or 1,000,000 runs each of

case-control and simplex family–based data were per- Å 150) and the resulting allele-frequency estimates (ta-
ble 1).formed by use of a range of association strengths, modes

of inheritance, and disease-allele frequencies. The re- The allele distributions for D6S105, in both patient
and control samples, were obtained from individual typ-combination fraction between the marker and disease

loci was sufficiently small that it could be taken as zero. ing and were compared with estimated frequencies from
pooled data. Results determined by use of a pool of 75The general population was assumed to be random mat-

ing, and equations for family-based data were from control individuals are shown in figure 1, where the P
value for this comparison, .91 (vs. P õ 1005, uncorrectedThomson (1995b). Parental marker alleles not transmit-

ted to the affected child formed the control population. for stutter), demonstrates the closeness of corrected
pooled allele counts to individual typing results. ThisPower was determined by the proportion of times that

the null hypothesis (Ho: no association of a marker locus experiment also exemplifies the limits of the technique:
The mean divergence between individual and pooledwith disease) is rejected for a given association strength.

The a level, or probability that the null hypothesis will allele frequencies is 0.7%/allele and ranges from 0.1%/
allele, for allele 121, to 3.1%/allele, for allele 123.be rejected by chance alone, was investigated at five

values: .0001, .001, .01, .05, and .10. The higher a Comparison of a pool of 51 hemochromatosis pa-
tients with a pool of 75 control individuals typed forlevels, .05 and .10, become pertinent in multiphasic ge-

nome screens. Five levels of control allele frequency were D6S105 (shown in fig. 2) revealed a striking positive
association of allele 121 in the patients, accompaniedstudied: .1, .2, .3, .4, and .5.
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Table 1

D6S105 Stutter-Correction Matrix A, Observed Pooled Fragment Distribution of Controls, Y, and Resulting Estimated Allele Frequencies X

PEAK HEIGHT FROM AUTOMATIC DNA SEQUENCER, FOR ALLELE

133 131 129 127 125 123 121 119 117 115 113 Y X ALLELE

.68 0 0 0 0 0 0 0 0 0 0 2.19 3.22 133

.26 .68 0 0 0 0 0 0 0 0 0 4.22 4.97 131

.06 .26 .55 0 0 0 0 0 0 0 0 9.33 14.26 129
0 .06 .27 .73 0 0 0 0 0 0 0 16.89 17.45 127
0 0 .18 .27 .68 0 0 0 0 0 0 47.56 59.24 125
0 0 0 0 .26 .73 0 0 0 0 0 26.13 13.75 123
0 0 0 0 .06 .27 .73 0 0 0 0 28.03 29.38 121
0 0 0 0 0 0 .23 .73 0 0 0 8.73 2.70 119
0 0 0 0 0 0 .04 .27 .73 0 0 4.98 3.94 117
0 0 0 0 0 0 0 0 .23 .80 0 1.94 1.33 115
0 0 0 0 0 0 0 0 .04 .20 .80 .00 .00 113
0 0 0 0 0 0 0 0 0 0 .20

by deficits among most other alleles (x2 Å 47.61, df range in microsatellite allele sizes is sufficiently great,
was explored with the tetranucleotide marker MBP. TheÅ 7, P õ 1005, corrected for stutter), with values virtu-

ally indistinguishable from individual typing results (x2 smallest of the eight MBP alleles, 212 bp, consistently
amplified 30% more than other alleles, in both individ-Å 47.95, df Å 7, P õ 1005). Significant differences were

also detected between pooled patient and control data ual genotyping profiles and pooled data, resulting in a
preferential-amplification factor of 1.3. For this compar-when there was no mathematical correction for stutter

artifact (x2 Å 36.97, df Å 7, P õ 1005), even though the ison of individually typed and pooled samples of 75
individuals, P ú .99, compared with P Å .83 for uncor-determination of allele frequencies within each pooled

sample was not as accurate. Multiple comparisons were rected data (not shown). No significant stutter artifacts
or preferential amplification of smaller alleles were ob-made for D6S105 by use of independent amplifications

of both patient and control pools, to demonstrate repro- served for the other two loci examined, F13A1 and TH.
The methods of adjustment presented here for both di-ducibility of these results. This example shows that a

dinucleotide microsatellite marker typed by use of nucleotide stutter and preferential amplification provide
promising solutions to these problems, and they need topooled DNA samples is able to clearly signal the pres-

ence of a disease locus by use of association analysis in be investigated further, for accuracy and reproducibility,
by use of a large panel of di-, tri-, and tetranucleotidea case-control study design.

Preferential amplification, which may occur when the microsatellite markers.

Figure 2 Hemochromatosis patients (n Å 51) and control indi-Figure 1 Pooled and individual typing results for D6S105 mi-
crosatellite and pool size 75. Pooled data were adjusted for stutter viduals (n Å 75), typed by use of pooled samples, for D6S105 micro-

satellite. Data were adjusted for stutter artifact by use of the matrixartifact by use of the matrix shown in figure 1 (P Å .91, vs. 1005 for
unadjusted data). shown in figure 1 (x2 Å 47.61, 7 df, P õ 1005).
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sults. These investigations show that control allele fre-
quencies can be derived accurately from family data by
use of pooled samples.

The allele distributions of the pooled control popula-
tions were compared with pooled patient distributions,
for both markers, to test for disease association. As ob-
served with individual typing, F13A1 showed no associ-
ation with IDDM (P ú .10). TH, however, was weakly
associated with IDDM, in both individually typed (x2

Å 9.61, df Å 5, P õ .05) and pooled data sets (x2

Å 10.63, df Å 4, P õ .05); the largest effects were due
to decreases in the patient alleles 191 and 198 (see fig.
4). This is due to linkage disequilibrium between certain

Figure 3 Pooled and individual typing results for F13A1 micro- alleles (particularly 191 and 198) of the TH locus andsatellite AFBAC control population, determined by use of the subtrac-
IDDM2 (VNTR) class III alleles (Bennett et al. 1995).tion method described by Thomson (1995b). A collection of 100 fami-
IDDM2 class I alleles are associated with disease re-lies each with two affected sibs were used (P ú .95).
sulting both in significantly lower patient class III allele
frequencies and in correspondingly lower frequencies of

DNA Pooling and Marker-Disease Associations by Use TH alleles 191 and 198. In this case, the pooling strategy
of Nuclear Family–Based Data is demonstrated to be effective in signaling the existence

A DNA-pooling strategy can also be used with nuclear of a disease locus, through disequilibrium with a linked
family–based sample collections, to identify marker-dis- marker locus, by use of family data. This is in spite of
ease associations. DNA samples obtained from mothers, a number of demanding circumstances, including the
fathers, and affected children are pooled separately for inability of conventional linkage analysis to detect the
PCR amplification of a particular marker. The subtrac- disease locus (Cox et al. 1988; Davies et al. 1994; Field
tion method (Thomson 1995b) can then be applied to and Nagatomi 1994), the presence of protective alleles,
pooled data to estimate a parental nontransmitted (i.e., the association of the disease allele with two microsatel-
AFBAC) control population for comparison with patient lite allele markers, and the relatively weak overall influ-
allele frequencies (see Material and Methods). A collec- ence of the disease locus, IDDM2 being secondary
tion of 100 nuclear IDDM families with affected sib to HLA (IDDM1).
pairs was utilized to demonstrate the application of this
method.

IDDM is strongly associated with HLA class II DR3
and DR4 haplotypes (IDDM1) on chromosome 6p21.3
(Karvonen et al. 1993), and a weaker genetic effect, due
to IDDM2 which is located on chromosome 11p15, is
well documented (Thomson et al. 1989; Bennett et al.
1995). Two tetranucleotide microsatellite markers—
TH, located 8.4 kb upstream from IDDM2 on 11p15.5,
and F13A1, located outside the HLA region on chromo-
some 6p24.2—were chosen for investigation, to serve
as examples of loci having, respectively, a known weak
disease association and no association.

Four pools of 100 individuals each (mothers, fathers,
Figure 4 IDDM patients versus AFBAC controls (pooled data),and first and second affected child) were constructed
with use of TH microsatellite marker. Significant heterogeneity is ob-and amplified for both markers. The allele distribution
served between the two allele distributions (x2 10.63, 4 df, P õ .05).of the pooled control population was calculated and
Of the seven known alleles at the TH locus, two (198 and 199) differ

compared with that obtained from individual typing re- by only one base. Both alleles are easily distinguished in individual
sults, by use of goodness-of-fit testing. The results for genotyping analyses but are detected only as a single peak (*) in a

pooled DNA amplification; this did not, however, pose a problem forthe F13A1 control alleles (fig. 3) demonstrate that the
pooled-data comparisons involving TH in this study, since the sum oftwo populations are extremely similar (P ú .95). Similar
the allele frequencies for 198 and 199, determined by use of individualresults were obtained for TH (P ú .90). Multiple com-
typing, was statistically indistinguishable from the combined allele

parisons were made for both markers, by use of indepen- frequency calculated by use of pooled data. In Caucasian populations,
dent pooled amplifications and pool sizes £200 (data the 198 allele is much more common (frequency Ç35%) than the 199

allele (frequency Ç1%) (Puers et al. 1993).not shown), to demonstrate reproducibility of these re-
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Table 2 refers to the true difference (at the population level—
not at the sample level), in marker-allele frequencies,

Statistical Power to Detect True Association
between patients and controls (population control and
parental nontransmitted alleles, respectively, for case-STATISTICAL POWER TO DETECT

control and nuclear family–based data). A biallelicASSOCIATION TRUE ASSOCIATION AT a Åb

STRENGTH marker system was studied, and independence of results
AND N a .01% .1% 1% 5% 10% for adjacent markers was assumed.

Power for association mapping is dependent on marker-.20:
allele frequencies and a number of unknown parameters:1,000 100 100 100 100 100
mode of inheritance of the disease, disease-allele frequen-500 100 100 100 100 100

400 100 100 100 100 100 cies, linkage disequilibrium between the marker and dis-
300 100 100 100 100 100 ease loci, and the recombination fraction between the
200 97–100 99–100 100 100 100 marker and disease loci. However, with both case-control
100 58–89 79–97 93–99 98–100 100

and family-based data and with random-mating assump-50 15–36 34–62 58–85 83–96 90–98
tions, our simulations show that power is determined only.10:

1,000 99–100 100 100 100 100 by the patient and control marker-allele frequencies, in
500 73–99 89–100 97–100 99–100 100 which the unknown parameters are subsumed. Power is
400 55–96 77–99 93–100 98–100 99–100 lowest when the frequency of a disease-associated allele in
300 34–84 58–95 82–99 94–100 97–100

the control population (fc) is .50 and is highest when the200 15–53 32–76 60–92 81–98 88–99
control allele frequency is low. When in table 2 a range100 3–13 10–31 29–59 52–81 64–88

50 1–2 3–9 12–27 31–52 42–64 of power values is given, the lowest value corresponds to
.05: fc Å .5, and the highest value corresponds to fc Å .1; for

1,000 24–82 45–93 72–99 89–100 94–100 example, in the case of N Å 200, association strength
500 5–30 15–54 37–79 62–92 73–96 Å .1, and a Å 1%, when fc Å .1, power is .92, and, when400 3–19 10–40 28–67 51–86 65–92

fc Å .5, power is .60.300 1–10 6–25 20–52 42–75 54–84
Power for high (.20), moderate (.10), and low (.05)200 1–4 3–12 12–33 30–57 40–69

100 . . .c 1–3 6–14 17–32 26–45 association strengths are given table 2. Low association-
50 . . .c . . .c 3–6 12–19 19–29 strength effects are detectable only in larger sample sizes.

At an association strength of .05, the odds ratio is 1.7 anda ‘‘Association strength’’ refers to the true difference in marker allele
1.2, with control frequencies of .1 and .5, respectively.frequencies in patients and controls—that is, at the whole-population

These power calculations serve only as a guide in thelevel rather than at the sample level; for example, an association
strength of .20 observed for a marker allele with frequencies of .7 and design of an experimental protocol. The actual power in
.5 in patients and controls, respectively, has an odds ratio of 2.3, any situation will depend on a large number of factors,
whereas an association strength of .20 for marker allele frequencies including the number of marker alleles, the method of
of .3 and .1 has an odds ratio of 5.1. N Å number of patients in a

analysis (Terwilliger 1995; Schaid 1996), and the actualcase-control study (N controls are assumed) or number of affected
form of the association—that is, positive or negative, onechildren in nuclear families ascertained for the presence of at least one

affected child. marker associated versus multiple markers, etc. These bial-
b a Å Type I probability level used in detecting associations. lelic calculations overestimate power for highly polymor-
c Values too close to type I error to be considered. phic microsatellites, but, with appropriate modification of

methods of association analysis—for example, use of a
likelihood approach (Terwilliger 1995)—the power mayStatistical-Power Considerations for Association
not be greatly overestimated. Even for moderate sampleMapping
sizes—for example, 200 patients and 200 controls—An appropriate experimental design for association
power is very high if the association strength is §.10 anddisease mapping must address two issues: (1) power, the
the type I a level is §1%. For larger sample sizes, whichprobability of detecting a true disease association, and
are feasible with a pooling strategy, power remains high(2) elimination of false associations, which represent
at nearly all a values and association strengths. Powertype I error. These form the basis of several important
at a Å 10% is high even with smaller sample sizes andconsiderations in the determination of the best experi-
association strengths; however, higher a values mean moremental design for association mapping, given intrinsic
type I errors, and an appropriate study design must balanceproperties of a disease, such as population prevalence,
these two factors.age at onset, and resources available to perform a ge-
Experimental Design for a High-Resolution Associationnome screen. We utilized simulation to determine power
Genome Screenfor nuclear family–based and case-control data for a

range of sample sizes and association strengths pertinent A study can be individually designed, taking account
of the power calculations in table 2, the availability ofto a genome screen (table 2), where association strength
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Table 3 In experiment A (see table 3), three phases of screen-
ing are employed, each with moderate sample sizes—

Illustrative Experimental Designs for Pooled Association Genome
200 patients and 200 controls in each of phases I andScreen
II and 100 simplex families in phase III. In phase I,

PHASE I PHASE II PHASE III an overall genome screen is performed on case-control
(INDIVIDUAL) (INDIVIDUAL) (FAMILY) pooled samples by use of 3,000 markers. Results from

adjacent markers are assumed to be independent, given
Change in Type I Errors

the marker density, which means that experimental-de-
sign considerations for phase II should take accountExperiment A:

Sample sizea 200/200 200/200 100 both of the actual number of marker associations de-
Markers typedb 3,000 150 / D 8 / D tected and of their respective map distributions in phase
a Level .05 .05 .05 I, if they are much higher than the number of type I
Type I errors 150 8 .4

errors expected. In phase II, associations detected in
phase I, at a Å .05 (150 of which are expected to beType II Errors

(% of True Errors Missed) type I errors), are tested in an independent set of pooled
cases and controls collected while phase I screening is

Association strength: in progress. Phase II reduces the number of type I errors
.20 õ1 õ1 1

from 150 to 8. In phase III, 100 simplex nuclear-family.10 10 19 54
samples are typed for those (8 / D) associations repli-.05 56 81 95
cated in phase II. Significant associations (a Å .05) that

PHASE I PHASE II remain at the end of phase III are very unlikely to be
(INDIVIDUAL) (FAMILY) type I errors (0.4 type I errors remain). Also, the nuclear

family–based typing ensures that, apart from type I er-Change in Type I Errors
ror, remaining associations are due to markers linked

Experiment B: to disease loci. The number of markers to be typed de-
Sample sizea 1,000/1,000 500 creases dramatically after each phase.
Markers typedb 6,000 6 / D Associations confirmed in phase III would be individ-
a Level .001 .05

ually typed in all samples (case-control and family sam-Type I errors 6 .3
ples). With the use of family-based data in which paren-

Type II Errors tal marker alleles are never transmitted to the affected
(% of True Errors Missed) sib or sib pairs in multiplex ascertained families, the

AFBAC control population would also be calculated
Association strength:

(Thomson 1995b), giving an unbiased estimate of popu-.20 0 0
lation control allele frequencies when the recombination.10 0 .5

.05 31 47 fraction between the marker and disease loci is suffi-
ciently small that it can be taken as zero. The individu-

a Number of affected and control individuals. A family with one ally typed data could then be analyzed for relative pre-
affected child gives the equivalent of one affected and one control

dispositional effects, genotype effects, modes ofindividual, whereas a family with an affected sib pair gives two af-
inheritance, and parent-specific effects, including mater-fected and two controls in a double-simplex analysis.

b D true allelic associations are present. nal/fetal interactions (Thomson 1995a). Efforts to finely
c When a range of power values are given in table 2, the midpoint map the genetic regions to localize the putative disease

(.3) of the control allele frequency values is used. gene could be conducted simultaneously.
In experiment A, virtually all markers with associa-

tion strengths ú.20 have been revealed by the end ofcase-control and family samples, and the expected type
phase II (table 3). For markers with association strengthsI errors following the high-resolution genome screen. It
§.10, õ19% are missed after phase II, whereas, foris important that, if additional samples of patients and
those at an association strength of .05, 81% are missed.controls or families are available, they be utilized to
At the end of phase III, for markers with an associationmaximize power at that stage. Family-based data, in-
strength §.20, detection is virtually complete (1%cluding simplex and affected-sib-pair families, can be
missed), whereas just over half (54%) of loci with anused at any phase of the screen. We illustrate two multi-
influence of .10 are missed, and those having a smallerphase experimental designs, with the aim of high power
influence (.05) are almost entirely missed.and elimination of type I errors (tables 3 and 4). Marker-

Experiment B examines 6,000 markers, with sampledisease associations remaining at the end of the studies
sizes of 1,000 cases and 1,000 controls in phase 1 andare detecting genetic influences on disease, with most

type I errors eliminated. with a sample size of 500 nuclear families in phase II.
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Table 4

Total Genetic Contribution to a Disease Identified from Experiments A and B, When a Total of 15 Predisposing Loci Are Assumed

PHASE I PHASE II PHASE III
EXPERIMENT

AND ACTUAL No. of Loci Genetic No. of Genetic No. of Genetic
ASSOCIATION NO. OF GENETIC Not Contribution Loci Not Contribution Loci Not Contribution
STRENGTH LOCI CONTRIBUTION Excluded Detectable Excluded Detectable Excluded Detectable

A:
.20 5 1.00 (57%) 5 57% 5 57% 5 56%
.10 5 .50 (29%) 4.5 26% 4 23% 2 15%
.05 5 .25 (14%) 2.5 6% 1.25 3% .4 1%

Total 15 1.75 (100%) 12.0 (162)a 89% 10.25 (18.25)a 83% 7.4 (7.8)a 72%
B:

.20 5 1.00 (57%) 5 57 5 57

.10 5 .50 (26%) 5 26 4 23

.05 5 .25 (17%) 3.5 12 2.34 10
Total 15 1.75 (100%) 13.5 (19.5)a 95 11.3 (11.6)a 90

a Total number of loci nominally significant.

The large sample size of phase 1 permits a stringent a of highly polymorphic microsatellite markers across the
level (.001), which reduces the number of false associa- genome, indicate that high-resolution genome screens
tions to six after the phase I screen and virtually elimi- to detect marker associations can serve as an effective
nates type I errors after the phase II examination of 6 method to uncover disease loci. Our demonstrated relia-
/ D nominal associations. The large sample sizes also bility of pooling DNA samples to accurately estimate
result in a very low rate of type II errors for association allele frequencies in case-control and nuclear family-
strengths ú10% (ú99% of loci identified). based samples, as well as our development of appro-

The two experiments can be further used to character- priate experimental designs and protocols, suggest the
ize the success of a genome screen for disease loci, in feasibility of genome screening to map disease genes by
terms of both the number of loci and the proportion of association. This method can also be used either to effi-
overall genetic influence identified (table 4). Simplisti- ciently follow up and confirm candidate regions identi-
cally, we assume microsatellites highly correlated with fied in independent studies or to investigate functionally
15 actual disease-predisposing loci are present in a ge- significant disease loci.
nome screen, 5 each at three levels of association The results presented here are relevant to all disease
strength (.2, .1, and .05), giving a total relative genetic studies but, in particular, to complex genetic diseases in
contribution of 1.75. In experiment A, after phase I, on which the mode of inheritance is unknown and in which
the basis of the type II errors (table 3), 80% (12/15) of multiple loci of modest effect, incomplete penetrance,
the total number of loci involved in disease have not heterogeneity, and interaction effects may be involved.
been excluded, whereas, at the end of the marker screen Association mapping is also an appropriate strategy to
in phase III, approximately half (7.4) of the total suscep- study the genetic component of infectious diseases—for
tibility loci have been identified. In terms of genetic in- example, mapping the genes involved in progression to
fluence, however, largely because of the nearly complete disease in tuberculosis or AIDS, for which linkage stud-
identification (99%) of the high-association-strength ies are not feasible. A recent report by Risch and Meri-
loci, 72%, of the genetic contribution to the disease has kangas (1996) suggests that, in the identification of dis-
been uncovered. The same analysis for experiment B ease loci for complex disorders, large-scale testing by
reveals virtually complete identification of markers hav- association analysis may be more effective than linkage
ing an association strength §.10, whereas nearly half analysis.
of the markers with association strengths of .05–.10 The central requirement for association mapping is
are identified, (table 4), making 75% of all disease loci that linkage disequilibrium be able to detect any locus
identified. The large numbers of cases typed in phases within the map intervals afforded by microsatellite den-
I and II of experiment B allow ú90% of the genetic

sities. The extent of disequilibrium can vary widelycontribution to be uncovered.
across the human genome. In the HLA region, which is

Discussion probably subject to strong balancing selection, disequi-
librium extends over 3 Mb (Klitz et al. 1992). In theTheoretical and empirical studies of linkage disequi-

librium, as well as the availability of a large number region of the hemochromatosis gene, disequilibrium de-
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clines monotonically over a region of 2–3 Mb, approxi- more, common allelic variants involved in disease may
be the product of selective pressure. This is the explana-mately localizing the site of the disease locus (Raha-

Chowdhury et al. 1995; Feder et al. 1996). On the basis tion for the similar allele frequencies, at such loci, among
long-isolated populations. The APOE locus (Weissof current knowledge, the typical extent of linkage dis-

equilibrium across the genome falls in the range of a 1993) and the HLA complex (Hedrick 1991) are two
examples. Polymorphism at each of these loci has beenfew hundred to several hundred kilobases (Jorde et al.

1994). However, there are exceptions, with closely implicated in disease, through association mapping. The
important feature for association mapping of loci thatlinked loci showing low levels of linkage disequilib-

rium—for example, the TAP genes within the HLA re- have been subject to selection is that disequilibrium can
be anticipated to occur at longer than typical map inter-gion (Klitz et al. 1995). Similarly, recombinational hot-

spots—as found, for example, in the b-hemoglobin re- vals—and also that disequilibrium will survive over
longer periods of time (Thomson 1977)—making thesegion—can eliminate interlocus associations in the space

of just a few kilobases (Chakravarti et al. 1984). loci easier to detect and identify in population samples
not taken from strictly defined islolates.Telomeric regions have shown lower levels of disequilib-

rium than are seen in regions more centromeric (Watkins Several technical issues pertinent to an association ge-
nome screen using pooled DNA must be addressed. Per-et al. 1994). Although a 3,000-microsatellite (1-cM) ge-

nomic screen should detect many disease genes, a much haps the most challenging aspect of this approach is the
accurate interpretation of microsatellite allele frequen-finer—for example, a 6,000-microsatellite (0.5-cM)

screen—will be the preferred goal. Even then, some dis- cies obtained from pooled amplifications. Preferential
amplification of smaller alleles and stutter artifact (par-ease loci will be missed, because of the lack of linkage

disequilibrium, either in that particular region or with ticularly with dinucleotide markers) will undoubtedly
create problems. Some of these difficulties may be over-the disease locus—for example, BRCA1 in non-Ashken-

azi Jewish populations, in which each family carries a come by modification of the amplification cycle (Smith
et al. 1995). Furthermore, the efficiency and reliabilityunique mutation.

The ideal population for association mapping for mo- of pooled DNA amplifications may also be improved
by integrating an automated hot-start method into thenogenic diseases will be isolated, have a narrow popula-

tion base, and be sampled not too many generations protocol, to increase yield and target specificity (Birch
1996). The successful application of a matrix-correctionremoved from the time during which a disease-causing

mutation has occurred (Lander and Schork 1994). Ge- method, the adjustments for preferential amplification,
and pool sample-size experiments reported here are verynetically isolated populations, which should be consid-

ered when they are available, have been used successfully encouraging, but they need to be pursued in further
studies.to identify a number of disease-gene regions (Carmi et

al. 1995; Nystuen et al. 1996; Scott et al. 1996; Sheffield Stutter artifacts and preferential amplification of al-
leles are marker dependent and will vary. Each markeret al. 1996a, 1996b). In these situations, regions of dis-

equilibrium may extend up to 10–20 cM, and a much in a high-resolution genomic screen should be indepen-
dently optimized by use of individual samples before thelower marker density can be utilized. However, these

are not essential requirements, as is illustrated by the initiation of pooled DNA amplifications. Optimization
runs could include the same 20 randomly selected con-observation that most genetic diseases show linkage dis-

equilibrium with closely linked markers, even though trol individuals (40 chromosomes), which would serve
to measure allelic stutter or preferential amplification,they do not satisfy these conditions.

Because no complex trait or disease has been even for mathematical adjustment of pooled data. A sample
of this size will yield useful information on populationpartly characterized in exact genetic terms, the paradigm

accounting for the success of disease-gene mapping to frequencies and marker heterozygosity (if unknown) and
could also signal strong disequilibrium with adjacentdate—namely, that one or a few genetic mutations cause

disease—deserves reexamination before being applied markers. In repeated amplifications of pools of 20 indi-
viduals by use of the D6S105 microsatellite marker, al-to complex diseases. Complex diseases may have their

genetic underpinning determined, in part, by variation lele distributions compared between pooled and individ-
ually typed results were extremely close (all P ú .95).at loci segregating at polymorphic frequencies in a popu-

lation. This is the case with many HLA-associated dis- More generally, binomial expectations show that an al-
lele occurring in control samples at a frequency of .025eases—for example, IDDM, MS, and rheumatoid ar-

thritis—in which common class II DRB1 and/or DQB1 would be missed 36% of the time in the sample of 40
chromosomes but that an allele with a frequency of .10alleles are directly involved in the disease process. The

non-HLA IDDM genes have individual genetic effects would be missed only 1.5% of the time. Even if a partic-
ular allele were not sampled in the optimization runs, itthat are much less than that of HLA and that may also

reflect modifying effects of common variants. Further- is important to remember that artifacts produced by
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stutter or preferential amplification act without bias on markers must be completed before amplification of sam-
ples, for either a pooled or an individually typed screen;both patient and control samples. If a marker associa-

tion is strong enough, significant differences will be ob- however, in pooling, construction of matrices for stutter
correction will also be needed for some markers.served between pooled patient and control allele fre-

quencies, even without adjustment for stutter artifact. Large-scale association genome screening using
pooled DNA samples also has several experimental ad-Some microsatellite markers will not be suitable for

DNA pooling, because of either poor primer design and vantages. In the case of complex diseases, both disease
heterogeneity and interaction effects can be examinedresultant amplification inefficiency or unpredictable

stutter-artifact patterns (particularly in dinucleotide re- simultaneously by appropriate subdivision of patient
groups prior to pooling. It can be hypothesized thatpeats), which might not allow for reliable mathematical

adjustment to accurately determine allele frequencies by different loci in different individuals may be contribut-
ing to a single disease phenotype. This possibility is par-use of pooled data. If either the disequilibrium of a

marker or the association strength of a disease locus to ticularly amenable to study in complex diseases where,
for example, HLA associations have been determineda disease were moderate or low, then the signal from

such a marker could be buried in the noise of stutter and can be used to differentiate patient population pools
(Tiwari and Terasaki 1985; Nepom and Erlich 1991;artifact and preferential amplification. With the increas-

ing availability of larger numbers of microsatellites, in- Klitz et al. 1994). In addition to predisposing genetic
components within a subgroup of a particular disease,cluding additional tri- and tetranucleotide markers

(Sheffield et al. 1995), which generally are more robust factors such as age at onset, sex, or other clinical descrip-
tives can also be used for categorization while at theand show less stutter, another marker within the same

region could be utilized, original primers could be rede- same time maintaining use of large-sample numbers for
increased statistical power. Complex diseases for whichsigned, or, alternatively, the marker could be used if all

samples were individually typed. linkage-based studies so far have been inconclusive, such
as affective disorder and multiple sclerosis, are primeThe practical laboratory definition of several thou-

sand microsatellite markers for use in pooled genomic candidates for an association analysis using a pooled
DNA genomic screen.screens is a significant task, but it must only be com-

pleted once, to make the method generally available for
association mapping of human disease and trait loci. An
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